Millimetron in studies of ISM and star formation

Igor Zinchenko Institute of Applied Physics, Russian Academy of Sciences

Supported by the Russian Science Foundation (grant No. 17-12-01256)

Outline

- Millimetron advantages and preferred targets
- Search for new lines at THz frequencies, important for ISM diagnostics
- Studies of hot cores and outflows by high excitation lines of CO and other molecules
- Surveys of star forming cores at THz frequencies
- ISM in external galaxies

Millimetron advantages

- Antenna is much larger than for other space mm/submm telescopes → higher sensitivity for point sources and higher angular resolution for extended sources.
- Antenna cooling → lower system noise (e.g. in comparison with Herschel) for bolometers (for heterodyne receivers the quantum noise will dominate).
- Frequency range of high resolution spectrometer is more extended than for other mm/submm telescopes → very important for ISM spectroscopy.
- In comparison with ALMA, Millimetron has a much larger field of view → important for studies of extended sources.
- Very high angular resolution in the interferometric mode
 → possibility to study very compact objects (but they should be very bright).

Sensitivity limitations for heterodyne measurements

Minimum noise temperature ("quantum limit")

mın

 $\frac{hv}{k}$

Angular resolution

Targets

- Cold low mass clumps
- Low brightness objects
- Dense "hot" regions with the emission peak at very high frequencies ("hot cores", post-shock gas, etc.)
- Diffuse ISM
- Submillimeter masers
- ISM in external galaxies

Some important submillimeter atomic and molecular transitions

Line	Wavelength (μm)	$\begin{array}{c} \text{Ionisation} \\ \text{Potentials}^a \\ (\text{eV}) \end{array}$	100 -	C 2024	[CII] ² P _{3/2} - ² P _{1/2} 1900 GHz	Graf et al. (2012) using GREAT
OIII NIII OI OIII	51.800 57.317 63.184 88.356	35.12-54.94 29.60-47.45 -13.62 35.12-54.94	T _{we} [¹	[¹³ cli] F=2-1	[¹³ CII] F=1-1	instrument on SOFIA.
NII Oi Cii	$121.898 \\ 145.525 \\ 157.741$	14.53-29.60 	- ا م استرس می	v _{LSR} [km/s]	10000000000000000000000000000000000000	
NII	205.178	14.53-29.60	3.	HD J = 1-0	a _	HD J = 1 – 0 spectrum in
Molecule	e Frequei	ncies (GHz)	(Ar) 3.7	ι ↓ ,- Γ	CO J = 23-22	TW Hya measured by
HD	2675, 533	32	Flux	E J	Д]	Herschel/PA
HF	1232, 246	53	3.0		л]	CS (Bergin et al
H ₂ O	1113, 167	70, 2774, 2969,		ኒ.የ.የ		(Dorgin ot al. 2013)
HeH⁺	2010, 400)9	3.	5 <mark> </mark>	 113 114	
				Wavelength (μm)	

Some important lines

- In Herschel [CII] 158 μm survey a large amount of "dark" warm molecular hydrogen was found in diffuse clouds (Langer et al. 2010, Velusamy et al. 2010).
- HD J=1-0 (112 μm). HD is an important tracer of molecular gas. Can be excited in a relatively warm medium. Observations of absorption lines can be interesting (a bright background continuum source is needed).
- HeH⁺ J=1-0 (149 μm). Can trace different from other molecules ISM environments. Available models (e.g., Roberge & Dalgarno 1982; Cecchi-Pestellini & Dalgarno 1993) predict a rather large HeH⁺ abundance in vicinity of extreme UV and X-ray sources. Expected in early Universe.

```
\text{He}^+ + \text{H} \rightarrow \text{HeH}^+ + hv
```

HeH⁺ as a new tracer of the ISM

- Neutral helium atoms formed the Universe's first molecular bond in the helium hydride ion HeH⁺ through radiative association with protons.
- Its observations are impossible from the ground since the lowest rotational transition is at 2 THz.
- J=2-1 observations (at 4 THz)?


```
\text{HeH}^+ + e^- \rightarrow \text{He} + \text{H}
```

 $HeH^+ + H \rightarrow H_2^+ + He$

Millimetron workshop, Paris, Sep 2019

Spectral line surveys

Left panel: ground-based Orion KL spectral surveys: 794-840 GHz (Comito et al. 2005), 600-720 GHz (Schilke et al. 2001) and 325-360 GHz (Schilke et al. 1997). Right panel: THz Orion KL spectrum from Herschel (Crockett et al. 2010).

Interstellar filaments

Polarization of dust and molecular emission

Polarization measurements help to study magnetic field in star forming regions Millimetron workshop, Paris, Sep 2019

CO outflows in S255IR

SMA+30m

ALMA

Zinchenko et al. 2015

Millimetron workshop, Paris, Sep 2019

Studies of hot cores and outflows by high excitation lines of CO and other molecules

Surveys of star forming cores

- Provide statistical information on physical properties of star forming cores.
- Chemical variations.
- Search for prestellar massive cores.

Observations in the new frequency band can better constrain core properties.

Examples of dense cores in regions of high mass star formation

Color maps show dust continuum emission at 1.2 mm, blue contours indicate CS J=5-4 emission and yellow dashed contours correspond to N_2H^+ J=1-0 emission.

(Pirogov, Zinchenko, Caselli, Johansson, 2007)

Internal structure? Chemical variations? Evolution stage?

16109i20algon workshop, Datis, Sep 2019

Search for prestellar massive cores

- Only a few high-mass pre-stellar cores (~30 M_☉ for a radius of ~0.03 pc) have been reported.
- The expected flux density at 300 µm for such core at the distance of 10 kpc is ~ 100 mJy.
- Millimetron will be able to easily detect such objects across the Milky Way galaxy.

30

20

12

18

12

Diffuse interstellar gas

Strong background sources are required. At $T_{sys} \sim 1000 \text{ K}$, $\Delta V \sim 1 \text{ km/s}$ and $\Delta t \sim 1 \text{ h}$ $\Delta S \sim 1 \text{ Jy}$

Source counts

21

Millimetron workshop, Paris, Sep 2019

ISM in external galaxies

Map of M82 in the [OI] 63µ line obtained with Herschel-PACS (Contursi et al. 2010).

Submillimeter masers

120

Humphreys

Table 1. H₂O Masers

Freq.	Transition	Vib.	Species ¹	E_u/k	CSE^2	SFR^2	EXG^2	Primary Reference	967.966 GHz
(GHz)	J_{k_a,k_c} - J_{k_a,k_c}	State		(K)					
22.235	616 - 523	G	O	644	Y	Y	Y	Cheung <i>et al.</i> (1969)	
96.261	$4_{40} - 5_{33}$	$\nu_2 = 1$	Р	3065	Y			Menten & Melnick (1989)	J=10
183.308	313 - 220	G	Р	205	Y	Y	Y	Waters et al. (1980)	
232.687	550 - 643	$\nu_2=1$	0	3463	Y			Menten & Melnick (1989)	
293.439	661 - 752	$\nu_2 = 1$	0	3935	Y			Menten et al. (2006)	89
321.226	$10_{29} - 9_{36}$	G	0	1862	Y	Y		Menten et al. (1990a)	
325.153	515 - 422	G	Р	470	Y	Y		Menten et al. (1990b	
³ 336.228	523 - 616	$\nu_2 = 1$	0	2956	Y			Feldman et al. (1993)	
354.885	$17_{412} - 16_{710}$	G	0	5782	Y			Feldman et al. (1991)	
380.194	414 - 321	G	0	324		Y		Phillips et al. (1980)	
437.347	753 - 660	G	Р	1525	Y			Melnick et al. (1993)	
439.151	$6_{43} - 5_{50}$	G	0	1089	Y	Y		Melnick et al. (1993)	
470.889	$6_{42} - 5_{51}$	G	Р	1091	Y	Y		Melnick et al. (1993)	
658.007	$1_{10} - 1_{01}$	$\nu_2 = 1$	O	2361	Y			Menten & Young (1995)	FIG. 1.—Excerpt fro

FIG. 1.—Excerpt from the level diagrams of the (11^{10}) and $(04^{0}0)$ vibrationally excited states of HCN near the Coriolis resonance involving the J = 8-12 rotational levels. *Arrows*: Frequencies of prominent laser transitions measured in the laboratory by Hocker & Javan (1967). *Bold arrows*: Lines observed toward IRC +10216. *Dashed arrow*: $(04^{0}0)$, J = 10-9 line not detected by us.

Detection of a new methanol maser line with ALMA

Zinchenko, et al. (2017)

Key problems

- General properties of ISM in galaxies
- The earliest stages of star formation
- Mechanisms of (high mass) star formation
- Astrochemistry, spectral surveys

Possible observational programs

- HD surveys
- ¹²C II and ¹³C II surveys
- HeH⁺ surveys
- Water in protoplanetary disks and outflows
- High excitation CO and other lines
- Absorption spectroscopy of diffuse clouds
- Magnetic field from polarization measurements

Conclusions

- Millimetron will be a unique instrument for many astrophysical problems, in particular in the field of the ISM and star formation studies.
- The best results can be achieved by combination of the space-borne and ground based facilities.

Thank you for attention!