FIRST STEPS IN SHORT mm AND sub mm ASTRONOMY

Memories of a beautiful era by V. Soglasnov

Submillimeters are not my area, but I had the opportunity to observe how, through the efforts of a small group of my colleagues, a new area of observational astronomy was practically from scratch, real astronomical created observations were carried out for the first time in the millimeter and submillimeter ranges. Two areas of their activity should be specially noted: these are observations at a high-mountain site in the Eastern Pamir (4350 m asl) at four windows of transparency (0.81, 0.58, 0,44 and 0.33 mm), and the development of a unique technology for calculating and manufacturing mesh filters for millimeter and submillimeter wavelengths. These results are a priority.

FIRST STEPS IN SHORT mm AND sub mm ASTRONOMY PREHISTORY

1953: Shklovsky creates the department of radio astronomy at the Sternberg Astronomical Institute (SAI)

From the very beginning, research was not limited only to the radio range, in fact it was the department of all-wave astronomy - far UV and X-ray, optics, except for the submillimeter range. At that time, there were not enough sensitive receivers for this wavelength range, but the main obstacle is the strong absorption in the earth's atmosphere of waves of short millimeters and submillimeters by molecules of oxygen and water (see slide 8), observations are possible only in separate windows of transparency, therefore good filters are needed to block radiation outside these windows. In the sixties (of the last century), the development of semiconductor technology led to the appearance bolometric-type millimeter-wave detectors, suitable for astronomical of observations. The first trial observations at a wavelength of 1mm were carried out by Low at the 5-m telescope of the Mount Palomar Observatory, 3 planets were observed, Venus, Mars and Jupiter.

FIRST STEPS IN SHORT mm AND sub mm ASTRONOMY PREHISTORY

- May 15, 1965: on the initiative of the President of the USSR Academy of Sciences M. V. Keldysh, by Decree No. 392-147 of the USSR Council of Ministers the Space Research Institute (IKI) of the USSR Academy of Sciences was founded.
- 1967: Shklovsky became the head of the astrophysics department at IKI, keeping the position at SAI. IK&ISAI alliance: more money, more manpower, and the main hope: to go beyond the atmosphere! (unfortunately, it never came true)

FIRST STEPS IN SHORT mm AND sub mm ASTRONOMY Now HISTORY

1968: IKI&SAI Alliance: creation of a submillimeter group (later added by ASC). The very next year began the first astronomical observations at short millimeter wavelengths of planets, galactic and extragalactic sources, as well as SMB.

At various times, the group included:

Maslov, I. A.; Soglasnova, V. A.; Sholomitskii, G. B.; Gromov, V.D.; Nikolskii, Y. V.; Maslennikov, K. L; Khokhlov, M. Z. ; Artamonov, V. V. ; Zabolotnyi, V. F. ; Rizov, E. F. ; ludin, B. F. ; Kostenko, V. I. ; Slysh, V. I. ; Pavlov, A. V. ; Shcherbina-Samoilova, M. B.

SUB-mm GROUP ACTIVITY **Observations:** 1969–1973: RT22, Simeiz 1981-1987: 6 m telescope 1986–1990: Pamir Instrumentation: 1969–2002: Radiometers 1969–2002: Band Pass Filters International collaboration: Germany, Italy, France

FIRST OBSERVATIONS

RT22, Simeiz, 1969–1973 First Astronomical Observations at short mm Planets Galactic&extragalactic sources

Fig. 8. Spectral distribution of radiation of the sun when its elevation was 64° and the humidity was 11 g/m³, taken at sea level.

RT22, Simeiz, 1969–1973 First Astronomical Observations at short mm Planets Galactic&extragalactic sources

Fig. 7. Recording of radiation of the atmosphere with an absolute humidity of 8 g/cm³ and a time constant of 1 sec; 1) with amplitude modulation: 2) with diagram modulation.

Fig. 9. Recording of the passage of Jupiter with beam-switching when its elevation was 35°, the absolute humidity of the air was 11 g/m³, and with a time constant of 10 sec.

Planets

Brightness temperatures of the planets at $\lambda 1.4$ mm

Planet	Brightness temperature (K)	Date of measurement	Phase angle (deg)
Mercury	480 + 80	25 July 1969	121
·	162±30	25-31 May 1970	129
	240 ± 30	7–8 June 1970	93
Venus	270 ± 30	18–25 July 1969	
	258 ± 42	May-June 1970	
Mars	180 ± 50	May-June 1970	
Jupiter*	145	-	
Saturn	120 ± 30	July 1969, June 1970	
Uranus	95 ± 28	31 May, 9–10 June 1970)
Neptune	160 ± 110	10 June 1970	

* Reference source

Sources

TABLE 1

Source	Coc	ordinates	Adopted angular Date of observation		Method of	Effective wavelength	Flux density, 10^{-26} m ⁻²	Error of mea-
Source	α1950.0	ð 1950.0	size		observation	mm	•Hz-1	10-26 W • cm ⁻² . Hz ⁻¹
DR 21 NGC 1275 NGC 4151 NGC 1976 NGC 3034 NGC 7027 3C 273 	$\begin{array}{c} 20^{h}37^{m}14\$2\\ 03 16 30\\ 12 08 02\\ 05 32 46.8\\ 09 51 54\\ 21 05 09.4\\ 12 26 33.0\\\\\\ 19 07 48\\ 19 21 25\\ 09 45 14.8\\ 05 31 30\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1970 Jun Jun 11 May 31 Jun 7 May 25 Jun 8-11 May 25 Jun 4 Jun 7 Jun 10 May 31 Jun 7 May 23 1969 Jul 21, 22,	60 min, cum. 90 min, cum. 17 scans 4 scans 50 min, cum. Cumulative 40 min, cum. 80 min, cum. 100 min, cum. 70 min, cum. 90 min, cum. 80 min, cum.	2.0 1.8 1.8 2.0 1.8 1.8 1.8 1.8 1.8 1.8 2.0 2.0 1.4 2.5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 12\\ 10\\\\ 100\\\\ 8\\ 29\\ 23\\ 15\\ 13\\ 43\\ 29\\ 16\\ 150\\ \end{array} $
Sgr A	17 42 30		2°×6 [°] .5 [19]	25 1970 May 23, 31 May 25, 26, 29	Scanning	 1.8	<2.106	=

Note: cum. = cumulative observation.

1981–1987: 1.1 mm observations of galaxies with the 6 m telescope, joint work with MPIfR

1981–1987: 1.1 mm observations of galaxies with the 6 m telescope, joint work with MPIfR

1.1 mm observations with the SAO 6 m telescope in 1981 indicate the larger flux density of the parent galaxy of Cyg A as compared to that measured at 1.3 mm in 1987. The 1.1 mm flux density of the Vir A radiogalaxy is consistent with its steep power spectrum. Upper limits for the galaxies AKN 253 and MK 50 are also given.

EASTERN PAMIR

h=4350 m above sea level, 70-cm telescope

1986–1990: Pamir h=4350 m above sea level, 70-cm telescope

1986–1990: Pamir, work and relax. h=4350 m above sea level, 70-cm telescope

1986–1990: Pamir, work and relax. h=4350 m above sea level. At this altitude, it takes at least a week to acclimatize perfectly. In contrast of Tibet site they had no oxygen station.

1986–1990: Pamir

h=4350 m above sea level, submm transparency

No.	Month	of probe	monthly ole water,	an-square mm	Fract amor ble than,	tion of unt of j water n , mm	time w precipit to more	nith an ta-	Fraction with of not ex 0 and	on of time cloudiness cceeding 3 points
			Average precipitab mm Root-mes scatter, n		0,5	1	2	3	0	3
1 2 3 4 5 6 7 8 9 10 11 2 3 14 15	January 1976 February March April May June July August September October November December January 1977 February March	$\begin{array}{c} 123\\ 70\\ 58\\ 57\\ 66\\ 65\\ 69\\ 62\\ 78\\ 115\\ 111\\ 104\\ 122\\ 111\\ 70\\ \end{array}$	$\begin{array}{c} 1.51\\ 1.59\\ 1.48\\ 2.68\\ 3.42\\ 4.37\\ 5.13\\ 4.31\\ 2.64\\ 2.38\\ 1.63\\ 1.31\\ 0.85\\ 0.93\\ 1.24\end{array}$	$\begin{array}{c} 0.43 \\ 0.45 \\ 0.52 \\ 0.88 \\ 0.93 \\ 1.63 \\ 1.58 \\ 1.17 \\ 1.03 \\ 0.7 \\ 0.58 \\ 0.29 \\ 0.45 \\ 0.34 \\ 0.64 \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.22\\ 0.06\\ 0.18 \end{array}$	$\begin{array}{c} 0.04\\ 0.14\\ 0.22\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.02\\ 0.18\\ 0.18\\ 0.18\\ 0.72\\ 0.64\\ 0.43\\ \end{array}$	$\begin{array}{c} 0.86\\ 0.74\\ 0.72\\ 0.32\\ 0.06\\ 0.06\\ 0.04\\ 0.00\\ 0.22\\ 0.30\\ 0.76\\ 1.00\\ 1.00\\ 1.00\\ 0.78\end{array}$	$\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 0.50\\ 0.20\\ 0.28\\ 0.08\\ 0.74\\ 0.76\\ 0.96\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ \end{array}$	$\begin{array}{c} 0.50\\ 0.33\\ 0.24\\ 0.11\\ 0.23\\ 0.28\\ 0.41\\ 0.40\\ 0.53\\ 0.34\\ 0.26\\ 0.34\\ 0.18\\ 0.43\\ 0.40\\ \end{array}$	0.60 0.43 0.34 0.37 0.32 0.42 0.49 0.63 0.83 0.57 0.36 0.53 0.26 0.50
	Average	e	2,36	0.70	0.03	0.17	0.52	0.71	0.33	0.48

TABLE I. Amount of Precipitable Water and Clear Time at Shorbulak for 15 Months of 1976-1977

* The amount of precipitable water was determined by integration for heights of more than 4350 m (the altitude of the telescope at Shorbulak) only for launches at a cloudless time.

1986–1990: Pamir h=4350 m above sea level, submm transparency

TABLE II.	Comparison of	Amount of	Precipitable	Water at	Three	Sites above	4000 m*

· · · · · · · · · · · · · · · · · · ·	đě		Average min	unu.	
Site	Altitu	Time	Winter	Sum- mer	Minta value
Mauna Kea, Hawaiian Islands, USA White Mountain, California, USA Shorbulak, Eastern Pamirs, Tadzhik SSR	4200 4340 4350	1971—1972 1976—1977	1.3 0.7? *** 1.39 1.01	2.3 3.0 3,75	0.4 0.3 0.31

* And below 5000 m (Mt. Chacaltaya not included).

** Determined from the five minimum readings.

*** The question mark is from Ref. 8.

1986–1990: Pamir

h=4350 m above sea level, 70-cm telescope

< * *

TABLE	I.	Calibration	Data
-------	----	-------------	------

Wavelength	Transmis-	Diffractive transmittance	Brightness temperature	Brightness temperature measured for planets, K		
mm	telescope optics	for point source	of sun, K	Mars	Jupiter	
0.34 0.44 0.58 0.81	0.42 0.38 0.37 0.34	$\begin{array}{c} 0.60 \\ 0.47 \\ 0.36 \\ 0.33 \end{array}$	4400 4500 4680 4990	193 ± 30	155 ± 23 157 ± 24 154 ± 20 167 ± 15	

TABLE II. Program of Observations								
				Survey re	egion			
Submilli-	ao 1950.0	ð _{• 1950.0}	Wave- length	Δα	Δð	N	z	
meter source	1990.0		mm	1'				
W3 Maffei-2 B5 M42 HFE11 M51 FIRSSE-286 W51 Serpens	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} +61^{\circ}52'20'\\ +592332\\ +324430\\ -52428\\ +712400\\ +472716\\ +444630\\ +142510\\ +011240\end{array}$	$\begin{array}{c cccc} " & 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.58 \end{array}$	$ \begin{vmatrix} 0 \dots + 15 \\ -15 \dots + 15 \\ -10 \dots + 5 \\ -20 \dots + 5 \\ -20 \dots + 5 \\ +10 \dots + 25 \\ -5 \dots + 5 \\ 0 \\ -5 \dots + 25 \end{vmatrix} $	-150 $-5+10$ $-5+5$ $-10+20$ $-5+15$ $-15+15$ 0 $-25+15$	8 26 14 22 27 21 9 1 62	$ \begin{vmatrix} 0.0 \\ +0.1 \\ +1.6 \\ +4.9 \\ +0.3 \\ +1.6 \\ +0.2 \\ +4.8 \\ +4.0 \end{vmatrix} $	

1986–1990: Pamir h=4350 m above sea level, 70-cm telescope

TABLE III. Measured Paramet

	Displa of cen	cement	Siz tic	e and on angl	posi- e		Tubaanabad	
Source	Δα	ΔÔ	a	b	P, 0 ·	<i>T</i> ₀, K	flux density	
	1'		1'			Ју		
(0.34 mm) *	$+2\pm 2$	+3±2	6 ± 2	18 ± 6	-37 ± 9	0.19 ± 0.03	29 000	
HFE11	-9 ± 1	$+10\pm2$	<3	9 ± 4	28 ± 8	0.14 ± 0.04	3 800	
Maffei-2 M51	$+12\pm1$ +10±2	$ -3\pm 2$ $ +1\pm 1$	$<^{3}_{1\pm3}$	5 ± 2 <3	-29 ± 17 -16 ± 10	0.10 ± 0.03 0.09 ± 0.03	2 000	
FIRSSE-286	-3 ± 1	$+3\pm 2$		≥ 97	18 ± 7	0.08 ± 0.04	4 300?	
W3	3 ± 2	< -13	12 ± 5		-29 ± 22	0.00 ± 0.00 0.11 ± 0.09	36 000?	
W 51 (0.58) * Ser	$\begin{vmatrix} 0 \\ < -2 \end{vmatrix}$	$\begin{vmatrix} 0\\ -9\pm 3 \end{vmatrix}$	>34	21 ± 2	-26 ± 7	0.14 ± 0.05 0.42 ± 0.11	1 200 230 000	
Double-source approximation								
Ser-1 Ser-2	$ < -2 \\ 9 \pm 2$	$ -11\pm 1$ >12	$ >40 \\ 20\pm4$	$\begin{vmatrix} 14 \pm 1 \\ 9 \pm 2 \end{vmatrix}$	-22 ± 2 -10 ± 6	$ \begin{array}{c} 0.37 \pm 0.05 \\ 0.23 \pm 0.05 \end{array} $	$\frac{140\ 000}{22\ 000}$	
	_		•	•		•		

*Wavelength of observation parenthesized.

1990: Italians in the Pamirs, the first after Marco Polo: Paolo de Bernardis, Silvia Masi and Maurizio Perciballi Purpose: to install a telescope with a mirror 2-3m in the Pamirs

The greatest progress of the submillimeter group has been achieved in the creation of bandpass filters for the millimeter and submillimeter ranges: theory and calculation of metal mesh filters, manufacturing technology (photolithography), measurement of characteristics. Numerous sets of filters of various types for different astronomical applications have been manufactured, in particular, for studying the Syunyaev-Zel'dovich effect.

RESONANT MESHES AS BANDPASS FILTER

Examples of various mesh structures of inductive and capacitive types

Fig. 1. The geometrical parameters of the resonant mesh consisting of an array of cross-shaped apertures.

L5 = 288 gm

L4 = 320 gm

L-var

L3 = 348 µm

L6 = 248 µm

C-var

G ≃ 400 µm, L = const = 340 µm

RESONANT MESHES AS BANDPASS FILTER

Only three bandpass filter manufacturers over the whole world :

IKI submm group (Vera Soglasnova, Igor Maslov)USA, Berkely University, bolo group (Paul Richards)GB, Cardiff University (Peter Ade)

The last work: Filters 1.2 and 2.1 mm for DIABOLO photometer, installed on 2.6m telescope TestaGrigia obsrvatory at Alps and 30m IRAM telescope (Soglasnova, V. & Maslov, I.)

THE DIABOLO INSTRUMENT

TestaGrigia

IRAM 30m

11

FIGURE 3. 2.1 mm map obtained with the Diabolo instrument in 1999 of the cluster of galaxies RXJ1347-1145. It corresponds to the coaddition of 84 independant rasters. The grey scale is from white (negative brightness) to black (positive brightness). Contours are in units of 07. mJy per beam (10 level) from - 10 0. Pixel size is 10 arcseconds. A smoothing by pixels was applied.

Other Projects

unfortunately, not implemented for various reasons, mainly bureaucratic

Cooled onboard submillimeter telescope

БСТ2 (Sub_mm observation from the board of the Space Station Salyut), AELITA

AIRPLANE FIR OBSERVATORY

... and others

Submillimeter Spaceboard Cooled Telescope

(35 years later: compare with Italian telescope at Tibet, presentation by Maria Salatino)

TABLE I. Basic Specificat:	ions of Cooled	Telescope with Submillimeter	Photometer
Wavelength range, mm	2-0.15	Sensitivity threshold, Jy	
Telescope diameter, mm	1000	at $\lambda = 1 \text{ mm}$	0.1
Cooling temperature, °K:		at λ = 0.3 mm	0.03
for telescope	27	Brightness-temperature	
for photometer	1.8	sensitivity, °K	$1 \cdot 10^{-4}$
for bolometers	0.3	Pointing accuracy, arc sec	10
Beamwidth, arc min	15-3	Weight of cryoagents, kg	400
Number of channels:		Functional life, yr	1-1.5
operating concurrently	4		
maximum	9		
·			
516 Sov. Astron. 30 (5),	SeptOct. 198	6	Sholomitskii et a
3000	1000 800 600 400	<i>300 200</i> λ. μ	
	$B \qquad C \qquad D \qquad D$	2 D3 D4 D5	
Ŭ	500	1000 1500 GHz	

conical aperture shield).

FIG. 4. A general view of the cooled telescope (not showing the photometer (p represents the normalized transmittance).

Thanks for attention