Capabilities and Geometry of VLBI Mode in Millimetron Mission

Rudnitskiy A. G., Mzhelskiy P. V., Shchurov M. A., Syachina T. A., Zapevalin P. R. Laboratory of Ballistic and Navigational Support for Space Projects Astro Space Center of P. N. Lebedev Physical Institute

Sub-mm and mm Astronomy Conference, 12 – 16 Apr, 2021, Moscow

Millimetron Science

Millimetron will have six main scientific directions with *breakthrough scientific tasks of Nobel prize level*. Science working groups were organized in 2019 to prepare corresponding scientific cases for both observational modes of the observatory:

1. Relativistic Astrophysics and S-E VLBI

- 2. Cosmology
- 3. Compact Heavily Obscured Galaxy Nuclei
- 4. The Water Trail
- 5. Filaments and magnetic fields on various scales
- 6. Solar System

Millimetron Space-VLBI Scientific Tasks & Constraints

VLBI Scientific tasks:

- High resolution 1D/<u>2D imaging</u> of black hole vicinity (M87 & Sgr A*)
- Search for wormholes
- High resolution AGN&QSO survey

Constraints:

- Sensitivity of space telescope and space-ground baselines
- Onboard stable hydrogen clock
- Data downlink channel and onboard memory
- Tracking stations
- Space-ground VLBI geometry and space telescope orbit configuration
- Data processing and orbit accuracy
- Scheduling of observations

Onboard VLBI Instruments

Freq. band, (GHz)	Т _{гх,} (К)	Polarization	Nº of Channels [*]	Channel Bandwidth, (GHz)	Comment	
31 - 45	< 17	RCP, LCP	2 RCP, 2 LCP	0.97 GHz	1.99 GHz, Option	
84 – 136	< 37	RCP, LCP	2 RCP, 2 LCP	0.97 GHz	1.99 GHz, Option	
211 – 275	< 90	RCP, LCP	2 RCP, 2 LCP	0.97 GHz	1.99 GHz, Option	
275 – 373	< 120	RCP, LCP	2 RCP, 2 LCP	0.97 GHz	1.99 GHz, Design	
690	TBC	RCP, LCP	2 RCP, 2 LCP	0.97 GHz	TBC	
Multi-frequency capabilities in talk of Taehyun Jung						

^(*) - 2 channels (USB, LSB) for each circular polarization correspond to the bandwidth of 1.99 GHz, 4 channels of 0.97 GHz for 2 polarization channels is 4 GHz in total

Sensitivity

ALMA Band	Bandwidth	Frequency*	SEFD _{MM}	SEFD _{ALMA} **	SEFD _{MM-ALMA}	
No.	(GHz)	(GHz)	(Jy)	(Jy)	(Jy)	
1	31-45	40	1100	14	124	
3	84-136	90	2760	42	340	
6	211-275	240	5520	58	565	
7	275-373	340	7180	70	710	
DNAC arrest of flux density responsed at baseling between stations 1 and 2 are be estimated by						

RMS error of flux density measured at baseline between stations 1 and 2 can be estimated by known relation:

$$\delta S = 1.14 \cdot \frac{SEFD_{12} \cdot 10^3}{\sqrt{2\Delta F \tau}}$$
, (mJy)

Where 1.14 coefficient is the correction coefficient due to a number of quantization bits per sample, ΔF -formatter input bandwidth (Hz) per specified frequency/ polarization channel and τ - integration time interval (sec). ^(*)-Nominal observing frequency at MM bands; Note: assumption that Millimetron bandwidth is 4 GHz

^(**) - ALMA array: 50·12 m

Sensitivity

^(*) - Use atmosphere phase compensation at ALMA; Note: assumption, that data has 2 bits quantization

Angular Resolution

Orbit Type	Best Angular Resolution, (µas)					
	43 GHz	90 GHz	240 GHz	330 GHz	690 GHz	
Circular Orbit (40000 km)	36	18	5.9	4.8	2.2	
HEO Orbit (350 000 km)	4.5	2.1	0.8	0.6	0.27	
L2 Orbit	0.8	0.4	0.14	0.1	0.05	

*Rudnitskiy et al., in prep.

Onboard Hydrogen Clock With the work important for the space-ground VLBI With the space-ground VLBI

Frequency standard with high stability is very important for the space-ground VLBI frequencies. "Vremya-Ch" is developing onboard hydrogen clock for "Millimetron", the cu development – technological models developed for tests.

Onboard hydrogen frequency standards

Frequency Instability, σ				
AFT [*] S	ystem	"Millimetron"		
Disabled	Enabled	requirements		
6.00·10 ⁻¹⁴	4.90·10 ⁻¹⁴	≤7·10 ⁻¹⁴		
1.05·10 ⁻¹⁴	8.30·10 ⁻¹⁵	≤1·10 ⁻¹⁴		
2.73·10 ⁻¹⁵	1.83·10 ⁻¹⁵	≤2·10 ⁻¹⁵		
1.10·10 ⁻¹⁵	8.84·10 ⁻¹⁶	≤5·10 ⁻¹⁶		
7.10·10 ⁻¹⁵	4.86·10 ⁻¹⁶	≤5·10 ⁻¹⁶		
	AFT* S Disabled 6.00·10 ⁻¹⁴ 1.05·10 ⁻¹⁴ 1.10·10 ⁻¹⁵ 7.10·10 ⁻¹⁵	Frequence of a state of		

^(*) - adiabatic fast transition of atoms

Demidov et. al., Izmeritelnaya technika, 8, 2018

Space-VLBI Geometry

Andrey Andrianov Talk

L2 orbit

- Halo orbit around L2 point of Sun-Earth system, distance 1.5 million kilometers
- Orbit period 178 days.
- Baseline 1 500 000 km, max.
- Time of oscillation around L2 is about half of a year.
- Antenna view angle opening is $\pm\,75^\circ$ in ecliptic latitude and longitude.

Combined orbit (L2+near-Earth orbit)

- High elliptical near-Earth orbit (HEO)
- Orbit period 10 days.
- Baseline up to 350 000 km, max.
- Possible transition from/to L2 point of Sun-Earth system using the gravitational maneuver near the Moon

Halo orbit (coordinate system with respect to L2 point)

Halo orbit projections: (a) – XY plane, (b) XZ plane, (c) – YZ plane

*Andrianov et al., MNRAS, 2021

Ballistic and Navigation Support

Organized ballistic and navigation support laboratory to provide ballistic and navigation support for the Millimetron space mission: **pre-launch stage, during the launch, in orbit**

Ballistic and Navigation Support

Millimetron will operate in orbit around L2 point of the Sun-Earth system, located at 1.5 million km in anti-Sun direction.

Flight stage	Velocity, m/s	Fuel, kg
Transfer correction to L2	90	320
Station-keeping in L2	15/year	
	45 (3 years)	154
	75 (5 years)	258
	105 (7 years)	364
	150 (10 years)	524
Deorbit	0-10	33
Transfer correction to Earth	45	150
HEO formation	100	330
Total (5 years in L2)	320	1091

Fuel estimations showed that it is not possible to perform a direct flight from point L2 to a highly elliptical orbit. Additional gravity assist maneuvers are needed to reduce these fuel costs.

Considered a new nominal orbital configuration around L2 point to meet the scientific requirements (especially for VLBI mode)

*Rudnitskiy et al., in prep.

New Nominal Orbit in L2 Point

Orbit around L2 point of Sun-Earth system Exit from the ecliptic plane: 400000 km

*Rudnitskiy et al., in prep.

Target sources: Sgr A* and M87 Ground telescopes: EHT global array Observing frequency: 240 GHz Bandwidth: 2 GHz Integration time: 10 s

Total duration of observation: 900 minutes (limited by onboard memory – 100 Tb)

Observation length: 24 hours (1 day) – 900 min/24 hrs

Millimetron sensitivity @ 240 GHz: ~5520 Jy

Ground Telescopes

Telescope	X, (m)	Y, (m)	Z, (m)	SEFD, (Jy)	D, (m)
IRAM 30	5088967.900	-301681.6000	3825015.8000	3500	30
SMT	-1828796.200	-5054406.800	3427865.200	15000	10
SMA	-5464523.400	-2493147.080	2150611.750	5000	16
LMT	-768713.9637	-5988541.7982	2063275.9472	4000	50
ALMA	2225061.164	-5440057.37	-2481681.15	80	70
APEX	2225039.53	-5441197.63	-2479303.36	5000	12
JCMT	-5464584.68	-2493001.17	2150653.98	10000	15
GLT	1500692.00	-1191735.0	6066409.0	4000	12
NOEMA	4523998.40	468045.240	4460309.760	1000	47
КР	-1995678.840	-5037317.697	3357328.025	13000	12

VLBI Simulations (u,v) coverage

Simulations of Sgr A* VLBI imaging for L2 Orbit (comparison with HEO Orbit)

Simulated image of Sgr A* (model 16) for HEO orbit (center) and for L2 orbit (right)

Simulations of Sgr A* VLBI imaging for L2 Orbit (comparison with HEO Orbit)

Simulated image of Sgr A* (model 24) for HEO orbit (center) and for L2 orbit (right)

Simulations of Sgr A* VLBI imaging for L2 Orbit (comparison with HEO Orbit)

SGR_A, RR-POL, 2.3e+5MHz Max. value: 0.1677 [Jy/Beam] Center at RA 17:45:40, DEC -29:00:27.9(2000) 0.00001 x 0.00001[as] at -3.34°

Simulated image of Sgr A* (model 31) for HEO orbit (center) and for L2 orbit (right)

Simulations of Sgr A* VLBI imaging for L2 Orbit (comparison with HEO Orbit)

Simulated image of Sgr A* (model 39) for HEO orbit (center) and for L2 orbit (right)

Simulations of M87 VLBI imaging for L2 Orbit

VLBI Simulations Photon Rings

B0834+06, RR-POL, 324MHz Max. value: 0.0003828 Center at RA 8:37:05.642, DEC 6:10:14.56, (2000) 0.322 x 0.00167[as] at -87.94°

M87 model by S. Chernov

VLBI Simulations Photon Rings

Detectable: first ring. Need to improve sensitivity.

VLBI Simulations Photon Rings

Conclusions

Proposed *new nominal orbit* with smaller exit from the ecliptic plane (~400 000 km) + better satellite radio visibility

 Imaging observations for Sgr A * and M87 in L2 point are possible! Within 24 hours versus ~7 days for high elliptical orbit (HEO)

 Current senisitivity and L2 orbit are capable of observing photon rings (at least the first one). Improved senisitivity will lead to better results.

Thank you for your attention!

Contacts: Alexey Rudnitskiy, Deputy Head on International Cooperation, ASC LPI <u>arud@asc.rssi.ru</u>, <u>almax1024@gmail.com</u>

Millimetron project web-page: <u>http://millimetron.ru/</u>