Radio transients: current status

M.S. Pshirkov Sternberg Astronomical Institute Lononosov Moscow State University

Submillimeter and Millimeter Astronomy: Objectives and Instruments 16.04.2021

- Transient definition and parameter space
- Solar system -- Sun and Jupiter
- Galaxy -- stellar flares, pulsar-related.
- Extragalactic -- afterglows, AGNs
- FRBs
- Unknown

Radio transients

- First, they are detected in the radioband. I.e., we're dealing with low frequencies mostly around 1 GHz (0.1-10 GHz).
- Second, they are transients, so the fluxes vary with time. The time scales of the variation differs vastly: from ~ns in pulsars' giant pulses to years in AGNs flares

Radio transients: parameter space

What we are not going to discuss

• SETI like Wow! signal and BLC1

ie

• Still there are a lot of other interesting transients

Radio transients: Solar system

- We'll start our tour from the immediate vicinity
- Two well-established sources of transients
- Sun: burst of several types
- Different duration and spectral evolution
- Originate due to magnetospheric processes (reconnection)
- X-ray counterparts (during Solar flares, Type II &III)

Radio transients: Solar system

- Coherent mechanism at low frequencies (<1 GHz). Plasma waves -> EM waves mostly at plasma frequency
- Incoherent, gyrosynchtotron at higher, so-called microwave bursts (~10 GHz)
- Electrons 100-1000 keV
- Tight correlation with X-ray

• Jupiter: magnetospheric <40 MHz, ms-s, interaction with Io

- First, more of the same, radiobursts from exoplanets
- One would expect Jovian-like decametric bursts from exoplanets as well
- Extremely weak
- First and yet only tentative detection in 2020, from τ Boötis @ 15 pc distance (Turner et al, 2021)
- Used LOFAR LBA
- 14-21 MHz, 3σ, 900 mJy, ~20 s
- Origin is far from being clear, could have a stellar origin or very specific instance of RFI

- Stellar flares. Much better established, more than 50 years of observations.
- Analogue of solar flares (convective K, M and later stars)
- Also coherent (~O(100 MHz)) and noncoherent (>GHz)
- **Binary systems**: symbiotic binaries RS CVns, cataclysmic variables, X-ray binaries (µQSOs)
- Young Stellar Objects
- Caveat: duration of these transient spans from <seconds to many days (like flare of XRB SS433)

AD Leo flares observed by Arecibo with 10 ms resolution (Osten&Bastian, 2006)

- **Pulsar** related, something new.
- Much shorter, reaching down to ns(!) -- even more interesting
- **RRATs**(Rotating radio transients) -- pulsars, that were discovered in single pulse searches. Most probably -- extreme nulling, i.e. >99% of periods PSR is in the 'silent mode'
- **Giant pulses** (GPs) from pulsars -- average pulses are very stable in shapes and quite stable in amplitude. Still, intensity of individual pulses could vary wildly. GP -- amplutude 10-30 times larger than average.
- Several pulsars (around 10) demonstrate them, both ordinary and MSPs
- The very best examples are the Crab pulsar and MSP B1937+21

- Crab: GPs are observed at the same phases as main pulse and interpulse
- Frequencies 0.1-10 GHz Apparently smooth pulse consists of stochastic microbursts. Some of them could be very strong -- GPs.
- Going further --nanoshots
- Shortest detected <0.4 ns
- $T_{\rm b} \sim 10^{41} {\rm K}$
- BPL distribution, dN/dE

- Plethora of new phenomenae, rare by Galactic standards events also have radio transients as counterparts.
- First group -- ejecta from strong explosions interacts with surrounding medium, causing radio flares. Typical timescales 10-100 days.
- Second group -- AGN (or just SMBH) related

- GRB afterglow.
- Afterglow in all energy ranges from X-ray to radio
- Spectrum peak evolves to lower frequencies as time goes by, i.e. right after the burst it's in X-ray, but 10 days later it could be in radio
- Could last >1000 days

Flux density (μJy)

GRB070125, Chandra et al 2008

• Radio Supernovae.

Scaled-down version of the previous. Detectable from <30 Mpc only

- Mildly relativistic ejecta
- Probe of circumexplosion medium and pre-explosion mass loss regime
- Duration -- O(100-1000 days)
- Galactic analogue: nova radio flares

Swinburne University of Technology Encyclopedia of Cosmos

- AGN flares
- Propagation of some perturbation in jet
- Duration in ~years range
- Observed at different frequencies, from ~GHz to >100 GHz
- TDEs, tidal disruption events
- Activity initiated by accretion of material from disrupted star onto a SMBH

3C273, Hovatta et al, 2008

Radio transients: FRBs

- Fast radio bursts (FRBs)
- Timeline:
 - <u>2007</u> First FRB reported ('Lorimer burst', FRB 010724)
 - ---'dark ages'----
 - <u>2013</u> Thornton et al, +4 new bursts. Almost certaintly extragalactic
 - 2015 Peryton mystery solved (MW oven as a culprit)
 - <u>2014-2017</u> FRB 121102 -- first non-Parkes FRB, first repeating burst, first precise localization and host identification
 - <u>2019</u> FRB 180814 -- second repeating source
 - <u>2020</u> first galactic FRB (FRB 200428) from magnetar SGR 1935+2154
 - <u>2021.04</u> ~120 FRBs, ~10 repeating FRBs *http://frbcat.org/*

FRBs: main characteristics

- short, burst duration ~ms
- bright 0.1-100 Jy
- large DM, implying extragalatic origin and correspondingly huge radio luminosities
- frequent, all-sky rate~10⁴ day⁻¹
- DM -- dispersion measure: $DM = \int_0^d n_e dl$ [DM]=pc cm⁻³
- Causes time delay between f_1 and f_2 (GHz)

$$\Delta t_{12} = 4.15 \,\,\mathrm{ms}\left(\frac{1}{f_1^2} - \frac{1}{f_2^2}\right) DM$$

"Lorimer burst' FRB010724 DM=375 pc cm-3. Inferred distance D~1 Gpc

FRBs: DM

- Large DM is the primary selection criterion.
- What is large?
- 100 pc cm⁻³ $< DM_{FRB} < 2600$ pc cm⁻³
- There 20+ Galactic PSRs with DM>1000 pc cm⁻³
- Highest Galactic DM~1800 pc cm⁻³
- So why extragalactic?
- Large excess $DM_x = DM DM_{MW}$.
- Galactic contribution is estimated using models for electron density in the Milky Way (NE2001, YMW16)

FRBs: luminosities and energetics

- DM_x allows to estimate luminosity distance and from that convert observed luminosities into intrinsic luminosities
- *S*: 0.04-140 Jy, *F*: 0.1-400 Jy ms
- Extremely bright, $T_{\rm b} \sim 10^{35}$ K
- $L \sim 10^{44} \text{ erg/s}, E \sim 10^{42} \text{ erg}$

ASKAP FRBs (Zhang et al 2021)

FRBs: rates

- Rate of FRBs depends on the sensitivity limit
- At benchmark 1 Jy ms it is safe to claim several thousand per day

Table 3 A summary of the various estimates for the all-sky FRB rate based on various surveys and analyses. Rates and ranges are quoted with confidence intervals (CI) above a fluence threshold (\mathcal{F}_{lim}) for observations at a given reference frequency.

Rate	Range	CI	$\mathcal{F}_{\mathrm{lim}}$	Frequency	Reference
$(FRBs \ sky^{-1} \ day^{-1})$		(%)	(Jy ms)	(MHz)	
~ 225	—	_	6.7	1400	(Lorimer <i>et al.</i> , 2007)
10000	5000 - 16000	68	3.0	1400	(Thornton <i>et al.</i> , 2013)
4400	1300 - 9600	99	4.4	1400	(Rane <i>et al.</i> , 2016)
7000	4000 - 12000	95	1.5	1400	(Champion <i>et al.</i> , 2016)
3300	1100 - 7000	99	3.8	1400	(Crawford <i>et al.</i> , 2016)
587	272 - 924	95	6.0	1400	(Lawrence <i>et al.</i> , 2017)
1700	800 - 3200	90	2.0	1400	(Bhandari <i>et al.</i> , 2018)
37	29 - 45	68	37	1400	(Shannon <i>et al.</i> , 2018)
					Petroff et al. 2019

- $dN/dS \sim S^{-\gamma}$, but exponent value is still highly uncertain, maybe breaks.
- In a couple of years we'll have more definite answer

- FRB121102 discovered at Arecibo was huge boost for the field
- You can allocate much more observational time, when you know that eventually there <u>must be</u> a burst.
- Usual localization for non-repeating bursts constrained by the beamsize $\sim 10'$
- Not enough for host identification
- Repeaters allow to use VLA and get much better localization

- FRB121102: DM=557 pc cm⁻³ ($3xDM_{NE2001}$)
- VLA+EVN observations localize better than 0.1"
- VLBI -- 0.012"
- Coincides with persistent (but variable) source with average flux ~0.2 mJy
- This allowed to use large optical telescopes (Gemini-North) and get host identification!
- Dwarf galaxy with active star-formation at z=0.193 (D=972 Mpc)

Chatterjee et al, 2017

- Huge amount of dedicated observational time got some key facts (from ~2000 bursts):
 - No periodicity observed as yet.
 - No counterparts at other frequencies (from optics to TeV)
 - Complicated behaviour -- not just simple Poisson
 - Variable spectral shape -- wide (hundreds MHz) burst can emerge anywhere from <GHz to 10 GHz
 - Fine temporal and spectral structure of the bursts (shares with some other FRBs)
 - Extremely high RM~10⁵ rad m⁻², which is evolving fast. There are only few other FRBs with detected polarization and for all of them RM values are modest (|RM|<1000)

from Cordes&Chatterjee, 2019

FRBs: models

- Models must account for observational properties -- large energetics, high rate, short duration.
- Exotic: strings, evaporating BHs, axion stars
- More realistic almost inevitably use neutron stars.
- There are a lot of models with NSs, but two classes of them are most appealing at the moment:
 - Extreme giant pulses from very young energetic pulsars (like Crab but <100 years old)
 - Flares from magnetars
- The second one is the most popular at the moment.

FRBs: coming from magnetars?

- FRB-magnetar connection first proposed by Popov&Postnov, 2007.
- Theoretical models (e.g. Lyubarski, 2014; Metzger et al, 2019)
- Magnetar flare initiate ultra-relativistic magnetic outflow
- It interacts with wind nebula
- Synchrotron burst
- Strong corroboration of model: FRB200428
- This burst was detected by CHIME (and STARE2).
- Most importantly, coincided both spatially and temporally with X-ray burst from SGR 1935+2154, detected by many X-ray telescopes!

Radio transients: unknown

- GCRT J1745–3009
 - VLA and GMRT: flares 2-10 minutes long, 77 min periodicity at 330 MHz.
 - Flaring star?
- Non-repeating transients.
 - LOFAR at 60 MHz -- 20 Jy flare for several minutes (Stewart et al, 2016)
 - LWA at 34 MHz, 100 sec, peaking at 1 kJy
 - At higher frequencies VLA surveys: several mJy level minute+ long transients (Bower et al, 2007), (Ofek et al, 2011)

LWAT10118, from Varghese et al, 2019

THANK YOU!