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Black Holes and Their Exotic Cousins

Q Black holes: Resulting from gravitational collapse of matter (if nothing stops it).

Q (some) Ways to stop the collapse :
— Radiative pressure: magnetospheric eternally collapsing objects (MECO)

-- Vacuum pressure: gravitational vacuum stars (gravastars).

QO (some) Other exotic cousins of black holes (BH):
-- Boson/quark/Planck and other ,strange” stars

-- Wormholes
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Evidence for Black Holes

The generic argument: enclosed mass.
Specific arguments: merger events and relativistic effects near the event horizon scale.
LIGO/VIRGO: Gravitational waves from BH mergers

GRAVITY / Keck: Stellar orbits near the event horizon scale in Sgr A*
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EHT: Strong gravitational lensing near the event horizon scale in M87
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How Black is Black?

U 0O O O

Enclosed mass [10°M]]

Distance from the galactic center [pc] v [Hez]

Relative R.A. [pas) Relative R.A. [uas]

Despite all recent successes, present measurements still do not unequivocally establish
the physical reality of black holes. Conclusive tests are needed.
Radiation spectrum: BH vs. BS (at high energies), BH vs. MECO (at very low energies)
Stellar orbits: BH vs BS
Gravitational waves: BH vs. anything (in principle). But need right templates
GR effects (lensing, photon rings etc.): BH vs. BS/MECO, alternative theories of gravity
) Need clever design for both new instruments and new measurements
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VLBI Prospects

Relative Declination [puas]

QO The EHT image of black hole shadow in M87: Effective dynamic Ker s — 0,857
range of about 30:1

O Mizuno+2018, Olivares+2020: Need dynamic ranges in excess
of 1000:1 to be able to use 2D brightness distribution for discerning
between Kerr BH and its alternatives such as dilaton BH and BS.
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The Need for Improved Imaging

O EHT Science:
-- Dynamic range of > 1000 is needed for distingiushing between different models of
central source (hence a factor of ~¥50 improvement from the present day performance.

O Ways to achieve it: Observation Model

® Broader bandwidth

- Oyms & BW™1/2 but uv-coverage is rhe same
e Phase stability

-- from broader BW (better SNR)

-- with large antennas (NOEMA, LMT, ALMA)

-- Frequency-phase transfer (22/43/86/230 GHz)
® Better uv-coverage

-- Snapshot capability

-- MFS capability

-- Maximum improvement with minimum number of additional antennas




Other Diagnostics?

Magnetic field? — It should be very different in objects with/without even horizon

Q
O Recognized early on (Ginzburg 1964, Kardashev 1995): magnetized rotators with dipole
magnetic field of up to ~1012 G
: e
O Expectations: 10’ N, O this paper
-- Wormholes: radial field of ~10°G near the ,neck” o | RN gienzuslet :11‘1(01993)5)
. ardashev (1992
(Novikov+ 2007) T \\\ VField & Rogers (1993) |
-- Gravastars: dipole field of ~101°G 7 ] v "\ Magnetized rotator:
(Mazur & Mottola 2006) S 10 T \/ dipole B-field
-- MECO: dipole field of up to ~10%° G o /‘ T
. b= “\ -
(Leiter & Robertson 2003) o | Evert horbon. i %
O BH: Magnetic field dominated by accretion disk/jet . [ AD dominated B-field o
. g Y Jet, 10~ Lobanov 1998

with strengths of up to 10% G (Field & Rogers 1993, 07 102 100 10 100 10 10
Meier 2001, Chael+ 2019) Rpc]

O Magnetic field of the central horizonless object will dominate at r <1000 R, :



Where Can Those B-Fields Hide?

Collimation profiles of inner jet in NGC 1052:
B>10% G (Baczko+2016)

Strong polarization in BL Lac, potentially
indicating a radial B-field (Gomez+ 2016)

Extreme opacity profiles in IC 310, suggesting
B>10° G (Schulz+ 2015)

Rotation measures in excess of 107 rad/m?
(Marti-Vidal+ 2015)

Millimetre VLBl and space VLBI
observations are instrumental for
dealing with each of these aspects
of compact jets.
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Brightness Temperature

O Strong B-fields may also be evidenced by high brightness temperature

O Taking a look at a ,normal“ IC-loss dominated plasma in a strong magnetic field gives:

B3/4
Tb,max~7X109K ( G )

A This, of course, implies a sky-rocketing v,,, &« B1/2,

O However, the rogue v,,, can be kept low if the plasma particle density N, «« B~7/2.

O This is actualy pretty feasible for:
—a ,runaway” cell in a turbulent flow (Marscher 2014);
—a BZ beam inside of BP jet;
—a truly ,indigenous” pair creation (for B > 103 G)



Brightness Temperatures from RadioAstron

O AGN survey: T, ;s from visibility e ]
measurements for 230+ AGN, bracket- B B~106/54/3G
ing Ty, ;s between its minimum, T, .., 14+ %o ® ﬁ o 8" ~.:::: ,
and limiting, T ., values. ~ 00, o & |

O Most AGN show the IC violation, with ﬁf
Tpmin = 103 Kand Tp ;i = 10 K. £ .
Requires Doppler factors 6 = 100. %IEJ

Q Measured T, ;;, indicate possible dEBO. o nverse Compton limit
B > 10%/5*/3 G, as one can expect 12—%%-5 e O Thiim

B3/4 (?\ OQ O Tb.min
Tb,max~7X109K(G) i | | | | | L
2 4 6 8 10 12 14

-7/2
/ . Lobanov 2015,

in a rarefied plasma with Ny < B
Kovalev et al. 2021

uv—distance [GA]

Q Feasible for a ,runaway” cell in a turbulent flow (Marscher 2014) or a Blandford-Znajek beam inside a
Blandford-Payne jet. Accretion disk supports B < 10* G. Where could the stronger fields come from?
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Measuring B-field within 1000 R,

O Core shift measurements at frequencies probing suffiecently small
linear scales (typically, 86+ GHz), to detect strong magnetic fields
(B > 10%G) or their gradients (B(r) « r~3).

- GMVA, EHT, (SVLBI)

O Brightness temperature measurements reaching the sensitivity to
B > 10%G, which corresponds to

S.or[ly] > 2.3 X 1012/ (b[km])?
~- SVLBI

Both approaches rely on making measurements at extremely high resolution.
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VLBI Imaging: Where We Stand

O Resolution: ~10-30 pas (RadioAstron @ 22GHz, EHT @ 230 GHz).
O Dynamic range: ~ 10,000/v[GHz], limited by uv-coverage (low v) and phase noise (high v)
Q Positional accuracy: ~0.1 mas (absolute) ~0.05 mas (relative).

O Addressing a number of fundamental problems, including the BH event horizon, galactic

structure and kinematics, r;gference frames, cosmology.
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Effect of the Phase Noise

O Dynamic range:

Nscan Nbas SNRamp SNRph
D = p 2 1 g 2 — \/NscaanaS
amp T “ph \/SNRampz + SNRpp”
O Brute force solution:  Increase Ng.qnNpas-

May work for SKA, but difficult to realize for mm-VLBI.
O In VLBI, careful optimisation for both SNR,,, and SNRpy, is required.

At frequencies above 43 GHz, optimisation for SNRpf1 becomes crucial. For instance,
oph = 100° in ,live” plain EHT data at 230 GHz (without phased ALMA), essentially
implying SNRy, = 0...
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Effects of Noise on Imaging

Reducing amplitude noise increases effective resolution:

FWHMpeam
SNRamp

res X

Reducing phase noise improves positional accuracy:

A o FWHMpeam
pos SNRphase

Frequency Phase Transfer (FPT) and Source Frequency Phase Referencing (SFPR) with
KVN (see Dodson+ 2018, NewAR, 79, 85):
-- Reaching A5 = 30 pas on baselines of ~500 km, with an effective SNRp,,~ 40

at 86 GHz.

This is a wonderful benchmark for designing new mm-VLBI instruments.
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Frequency Phase Transfer

O Frequency phase transfer (FPT) at KVN enables achieving remarkable phase stability.
L The phase noise is reduced down to ~10° at 86 GHz and ~ 15° at 130 GHz
O A three-frequency (22/43/86 GHz) design can already be implemented on several GMVA antennas.

O Testing and establishing this capability at 230 GHz (with 43/86/230/345 GHz receiver) is an area of
critical impact for the EHT.
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Source Frequency Phase Referencing

. ~ 0.005° v 1.3 Osep 1 0L O-130GH O - 86GHr .
O SFPR at KVN: O'ph =~ U. @ ( 1 ) . [ (Y — 07, ~0.005 (v/GHZ)™ (6,0/°)
O Implementation of SFPR on intercontinental baselines = o8 ]
with the VLBA has been shown to provide a ~10 pas Sl o
. o & .
accuracy for relative astrometry measurements. - ,
(based on data from Rioja+ 2015) |
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Frequency Phase Transfer

Q If demonstrated to work as expected at 230 GHz, application of the FPT method should
lead to factors of 15—50 improvement of the dynamic range

Q Arguably the cheapest way to achive the required improvement of the dynamic range of

the EH imaging.

O Need to build a set of 3 FPT-capable receievers and use them for testing the method.

Major VLBI arrays operating at mm-wavelengths
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FPT and SFPR at 86 GHZz

Q Dynamic range, structural
sensitivity and effective resolution
of VLBl images depend on a range
of factors.

O Improvements of amplitude
and phase noise provided by FPT
can potentially lead to 86 GHz FPT
GMVA outperforming the EHT
working in the canonical
observational mode.

O Combined aspects of FPT and
SFPR provide a very attractive
option for astrophysical and
astrometric studies at 22/43/86
GHz .

Fringe spacing
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AGN opacity
Phase noise

Effective antenna area

SEFD

Amplitude noise
Filling of uv-plane
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Relative declination (uas)

Science Examples: Black Holes

O Imaging of the event horizon: the factor of ~¥50 improvement of dynamic range expected
from FPT at 230 GHz is essential for distinguishing between black holes and their ,mimickers”.

O Core shift measurements at 43+ GHz offer the
best probe of magnetic field near the event horizon
scale: potentially most effective way to rule out

the black hole ,mimickers”.
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Science Examples: Sgr A* Hotspot

QO Kinematic monitoring of a hotspot orbiting Sgr A*.

O To detect the hotspot motion at an N, accuracy, while beating the scattering, need

¥(blue) and y(red) offset (parcsec)
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Science Examples: AGN Astrometry

Yearly parallaxes up to distances of ~ 100 kpc / N,/ 6.

Proper motions up to distances of = 20 kpc (er/s) (%) v Nops/6 .

,CMB parallaxes” up to distances of = 78 Mpc (%) v Nops/6 .

Accurate Hubble constant measurements from yearly and CMB parallaxes

o 0O 0O O

O Most accurate determination of Solar motion in MW and wrt. CMB reference frame.
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Potential Developments

O Implementing SFPR imaging at 43 and 86 GHz should provide substantial improvements
of image fidelity: astrometric accuracy and effective resolution.

O Small scale implementation (KVN, 1-3 antennas in Europe):

would provide astrometric accuracy of ~10 uas. .
_ , Antennas on sites in Northern
— accurate absolute kinematic measurements }
_ o Caucasus and Central Asia would

— opacity and magnetic field measurements Ivi ) .
— radio/optical reference frames strongly improve imaging

& ' quality of FPT KVN+, GMVA, and

O Large scale implementation (GMVA): would provide EHT observations .

the most efficient VLBI imaging at 43+ GHz:
— it will turn 3-mm VLBI into a powerful imaging machine, with an effective resolution

similar to that of the EHT and a better structural sensitivity.

O Testing the FPT technique at 230 GHz (tests with 3-4 antennas): if proven to work, it
would provide arguably the strongest boost to the dynamic range and fidelity of EHT

imaging.
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