Millimetre VLBI probes of physics down to the event horizon scale

Andrei Lobanov, MPIfR Bonn / MIPT Moscow

MAX-PLANCK-GESELLSCHAF

Black Holes and Their Exotic Cousins

- □ Black holes: Resulting from gravitational collapse of matter (if nothing stops it).
- □ (some) Ways to stop the collapse :
 - Radiative pressure: magnetospheric eternally collapsing objects (MECO)
 - -- Vacuum pressure: gravitational vacuum stars (gravastars).
- □ (some) Other exotic cousins of black holes (BH):
 - -- Boson/quark/Planck and other "strange" stars
 - -- Wormholes

Evidence for Black Holes

- □ The generic argument: enclosed mass.
- □ Specific arguments: merger events and relativistic effects near the event horizon scale.
- □ LIGO/VIRGO: Gravitational waves from BH mergers
- GRAVITY / Keck: Stellar orbits near the event horizon scale in Sgr A*
- □ EHT: Strong gravitational lensing near the event horizon scale in M87

How Black is Black?

- Despite all recent successes, present measurements still do not unequivocally establish the physical reality of black holes. Conclusive tests are needed.
- **Radiation spectrum**: BH vs. BS (at high energies), BH vs. MECO (at very low energies)
- **Stellar orbits**: BH vs BS
- Gravitational waves: BH vs. anything (in principle). But need right templates
- **GR effects** (lensing, photon rings etc.): BH vs. BS/MECO, alternative theories of gravity

Need clever design for both new instruments and new measurements

VLBI Prospects

 $\text{Kerr } \mathbf{a} = 0.937$

- The EHT image of black hole shadow in M87: Effective dynamic range of about 30:1
- Mizuno+2018, Olivares+2020: Need dynamic ranges in excess of 1000:1 to be able to use 2D brightness distribution for discerning between Kerr BH and its alternatives such as dilaton BH and BS.

The Need for Improved Imaging

- EHT Science:
 - -- Dynamic range of > 1000 is needed for distingiushing between different models of central source (hence a factor of ~50 improvement from the present day performance.
- □ Ways to achieve it:
 - Broader bandwidth
 - -- $\sigma_{rms} \propto BW^{-1/2}$, but uv-coverage is rhe same
 - Phase stability
 - -- from broader BW (better SNR)
 - -- with large antennas (NOEMA, LMT, ALMA)
 - -- Frequency-phase transfer (22/43/86/230 GHz)
 - Better uv-coverage
 - -- Snapshot capability
 - -- MFS capability
 - -- Maximum improvement with minimum number of additional antennas

Other Diagnostics?

- □ Magnetic field? It should be very different in objects with/without even horizon
- Recognized early on (Ginzburg 1964, Kardashev 1995): magnetized rotators with dipole magnetic field of up to ~10¹² G
- □ Expectations:
 - -- Wormholes: radial field of ~10⁹G near the "neck" (Novikov+ 2007)
 - -- Gravastars: dipole field of ~10¹⁰ G (Mazur & Mottola 2006)
 - -- MECO: dipole field of up to ~10²⁰ G (Leiter & Robertson 2003)
- BH: Magnetic field dominated by accretion disk/jet, with strengths of up to 10⁴ G (Field & Rogers 1993, Meier 2001, Chael+ 2019)

 \Box Magnetic field of the central horizonless object will dominate at r < 1000 R_{g}

Where Can Those B-Fields Hide?

- Collimation profiles of inner jet in NGC 1052: B>10⁴ G (Baczko+2016)
- Strong polarization in BL Lac, potentially indicating a radial B-field (Gómez+ 2016)
- Extreme opacity profiles in IC 310, suggesting B>10⁵ G (Schulz+ 2015)
- Rotation measures in excess of 10⁷ rad/m² (Martí-Vidal+ 2015)

Millimetre VLBI and space VLBI observations are instrumental for dealing with each of these aspects of compact jets.

Brightness Temperature

- Strong B-fields may also be evidenced by high brightness temperature
- Taking a look at a "normal" IC-loss dominated plasma in a strong magnetic field gives:

$$T_{b,max} \sim 7 \times 10^9 \, \mathrm{K} \, \left(\frac{B^{3/4}}{\mathrm{G}} \right)$$

- \Box This, of course, implies a sky-rocketing $\nu_m \propto B^{1/2}$.
- □ However, the rogue ν_m can be kept low if the plasma particle density $N_0 \propto B^{-7/2}$.
- □ This is actualy pretty feasible for:
 - a "runaway" cell in a turbulent flow (Marscher 2014);
 - a BZ beam inside of BP jet;
 - a truly "indigenous" pair creation (for $B > 10^{13}$ G)

Brightness Temperatures from RadioAstron

- □ AGN survey: $T_{b,vis}$ from visibility measurements for 230+ AGN, bracketing $T_{b,vis}$ between its minimum, $T_{b,min}$, and limiting, $T_{b,lim}$, values.
- □ Most AGN show the IC violation, with $T_{b,\min} \ge 10^{13}$ K and $T_{b,lim} \ge 10^{14}$ K. Requires Doppler factors $\delta \ge 100$.
- □ Measured $T_{\rm b,lim}$ indicate possible $B > 10^4 / \delta^{4/3}$ G, as one can expect

$$T_{b,max} \sim 7 \times 10^9 \text{ K} \left(\frac{B^{3/4}}{\text{G}}\right)$$

in a rarefied plasma with $N_0 \propto B^{-7/2}$.

□ Feasible for a "runaway" cell in a turbulent flow (Marscher 2014) or a Blandford-Znajek beam inside a Blandford-Payne jet. Accretion disk supports $B \leq 10^4$ G. Where could the stronger fields come from?

Measuring B-field within 1000 R_g

□ Core shift measurements at frequencies probing sufficeently small linear scales (typically, 86+ GHz), to detect strong magnetic fields $(B > 10^4$ G) or their gradients $(B(r) \propto r^{-3})$.

-- GMVA, EHT, (SVLBI)

Brightness temperature measurements reaching the sensitivity to $B > 10^4$ G, which corresponds to

```
S_{cor}[Jy] > 2.3 \times 10^{12} / (b[km])^2
```

-- SVLBI

Both approaches rely on making measurements at extremely high resolution.

VLBI Imaging: Where We Stand

- **Resolution:** ~10-30 μas (RadioAstron @ 22GHz, EHT @ 230 GHz).
- Dynamic range: ~ 10,000/v[GHz], limited by *uv*-coverage (low v) and phase noise (high v)
- **Positional accuracy:** ~0.1 mas (absolute) ~0.05 mas (relative).
- Addressing a number of fundamental problems, including the BH event horizon, galactic structure and kinematics, reference frames, cosmology.

Effect of the Phase Noise

Dynamic range:

$$D \approx \sqrt{\frac{N_{\text{scan}} N_{\text{bas}}}{\sigma_{\text{amp}}^2 + \sigma_{\text{ph}}^2}} = \frac{SNR_{\text{amp}} SNR_{\text{ph}}}{\sqrt{SNR_{\text{amp}}^2 + SNR_{\text{ph}}^2}} \sqrt{N_{\text{scan}} N_{\text{bas}}}$$

- □ Brute force solution: Increase $N_{scan}N_{bas}$. May work for SKA, but difficult to realize for mm-VLBI.
- □ In VLBI, careful optimisation for both SNR_{amp} and SNR_{ph} is required.
- □ At frequencies above 43 GHz, optimisation for $SNR_{\rm ph}$ becomes crucial. For instance, $\sigma_{\rm ph} \approx 100^{\circ}$ in "live" plain EHT data at 230 GHz (without phased ALMA), essentially implying $SNR_{\rm ph} \rightarrow 0$...

Effects of Noise on Imaging

❑ Reducing amplitude noise increases effective resolution:

$$\theta_{res} \propto \frac{FWHM_{beam}}{\sqrt{SNR_{amp}}}$$

□ Reducing phase noise improves positional accuracy:

$$\Delta_{pos} \propto \frac{FWHM_{\text{beam}}}{SNR_{\text{phase}}}$$

□ Frequency Phase Transfer (FPT) and Source Frequency Phase Referencing (SFPR) with KVN (see Dodson+ 2018, NewAR, 79, 85):

-- Reaching $\Delta_{pos}\approx 30~\mu as$ on baselines of ~500 km, with an effective $SNR_{ph}\sim 40$ at 86 GHz.

□ This is a wonderful benchmark for designing new mm-VLBI instruments.

Frequency Phase Transfer

- Frequency phase transfer (FPT) at KVN enables achieving remarkable phase stability.
- □ The phase noise is reduced down to ~10° at 86 GHz and ~ 15° at 130 GHz
- □ A three-frequency (22/43/86 GHz) design can already be implemented on several GMVA antennas.
- □ Testing and establishing this capability at 230 GHz (with 43/86/230/345 GHz receiver) is an area of critical impact for the EHT.

Source Frequency Phase Referencing

○ - 130 GHz ○ - 86 GHz ○ - $\sigma_{\rm nh} \approx 0.005 \ (\nu/\rm GHz)^{1.3} \ (\theta_{\rm sep}/^{\circ})^{1}$

(based on data from Rioja+ 2015)

20 م^{اہا} [_]

10

□ SFPR at KVN:
$$\sigma_{\rm ph} \approx 0.005^{\circ} \left(\frac{\nu}{\rm GHz}\right)^{-1.3} \left(\frac{\theta_{\rm sep}}{1^{\circ}}\right)^{-1}$$
.

□ Implementation of SFPR on intercontinental baselines with the VLBA has been shown to provide a ~10 µas accuracy for relative astrometry measurements.

Frequency Phase Transfer

- □ If demonstrated to work as expected at 230 GHz, application of the FPT method should lead to factors of 15—50 improvement of the dynamic range
- Arguably the cheapest way to achive the required improvement of the dynamic range of the EH imaging.
- □ Need to build a set of 3 FPT-capable receievers and use them for testing the method.

FPT and SFPR at 86 GHz

 Dynamic range, structural sensitivity and effective resolution of VLBI images depend on a range of factors.

Improvements of amplitude and phase noise provided by FPT can potentially lead to 86 GHz FPT GMVA outperforming the EHT working in the canonical observational mode.

□ Combined aspects of FPT and SFPR provide a very attractive option for astrophysical and astrometric studies at 22/43/86 GHz .

Factors in imaging	Dependence on frequency	FPT GMVA @ 86 GHz / EHT @ 230 GHz
Fringe spacing	$\propto \nu^{-1}$	1/3 (1/3)
Scattering	$\propto \nu^{-2}$	1/9 (1/27)
AGN opacity	$\propto \nu^{-1}$	1/3 (1/81)
Phase noise	$\propto \nu^{+1}$	10/1 (10/81)
Effective antenna area	$\propto v^{-1/2}$	$\sqrt{3}/1$
SEFD	$\propto \nu^{+1}$	3/1
Amplitude noise	$\propto v^{+3/2}$	9/\[3] (10/9\[3])
Filling of uv-plane	$\propto \nu^{+1}$	$3/1 (10\sqrt{3}/9)$
Effective structural sensitivity	$\propto \nu^{+1/2}$	$10\sqrt{3}/9$
Effective dynamic range	$\propto \nu^{-3/2+\alpha}$	$21\sqrt{3} \ 3^{-\alpha}$
Effective resolution	$\propto \nu^{+1/4-lpha}$	$3/4 \ 3^{-\alpha}$

Science Examples: Black Holes

□ Imaging of the event horizon: the factor of ~50 improvement of dynamic range expected from FPT at 230 GHz is essential for distinguishing between black holes and their "mimickers".

□ Core shift measurements at 43+ GHz offer the best probe of magnetic field near the event horizon scale: potentially most effective way to rule out the black hole "mimickers".

Relative RA (µas)

-27.37

Dilato

100

-100

Mizuno+2018

S/S

Relative RA (uas)

100

-100

100

50

0

-50

Relative declination (µas)

Science Examples: Sgr A* Hotspot

Kinematic monitoring of a hotspot orbiting Sgr A*.

To detect the hotspot motion at an N_{σ} accuracy, while beating the scattering, need

Science Examples: AGN Astrometry

- □ Yearly parallaxes up to distances of $\approx 100 \text{ kpc} \sqrt{N_{\text{obs}}/6}$.
- □ Proper motions up to distances of ≈ 20 kpc $\left(\frac{v}{\text{km/s}}\right)\left(\frac{\Delta t}{\text{vr}}\right)\sqrt{N_{\text{obs}}/6}$.
- □ "CMB parallaxes" up to distances of ≈ 78 Mpc $\left(\frac{\Delta t}{\text{vr}}\right)\sqrt{N_{\text{obs}}/6}$.
- □ Accurate Hubble constant measurements from yearly and CMB parallaxes
- □ Most accurate determination of Solar motion in MW and wrt. CMB reference frame.

21

Potential Developments

- □ Implementing SFPR imaging at 43 and 86 GHz should provide substantial improvements of image fidelity: astrometric accuracy and effective resolution.
- Small scale implementation (KVN, 1-3 antennas in Europe): would provide astrometric accuracy of ~10 μas. – accurate absolute kinematic measurements
 - opacity and magnetic field measurements
 - radio/optical reference frames.
- □ Large scale implementation (GMVA): would provide the most efficient VLBI imaging at 43+ GHz:

Antennas on sites in Northern Caucasus and Central Asia would strongly improve imaging quality of FPT KVN+, GMVA, and EHT observations .

- it will turn 3-mm VLBI into a powerful imaging machine, with an effective resolution similar to that of the EHT and a better structural sensitivity.
- Testing the FPT technique at 230 GHz (tests with 3-4 antennas): if proven to work, it would provide arguably the strongest boost to the dynamic range and fidelity of EHT imaging.