

Superconducting sub-THz coherent receivers for space and ground-based radio astronomy – Russian experience and technologies

Valery Koshelets^{1,2}, Kirill Rudakov^{1,3}, Andrey Khudchenko^{1,2}, Lyudmila Filippenko¹, Ronald Hesper³, Jacques Lepine⁴, Sheng-Cai Shi⁵, Andrey Baryshev³

¹Kotel'nikov Institute of Radio Engineering and Electronics, Moscow, Russia ²Astro Space Center of Lebedev Physical Institute RAS, Moscow, Russia ³Kapteyn Astronomical Institute, University of Groningen, the Netherlands ⁴Instituto da Astronomia, University of São Paulo, Brazil ⁵Purple Mountain Observatory CAS, Nanjing, China

Проект РФФИ БРИКС-т № 19-52-80023

SIS THz receivers for space and ground-based radio astronomy Outline

- 211 275 GHz SIS Receiver for Millimetron
- Nb/AIN/NbN Tunnel Junctions
 780 950 GHz Array Receiver for APEX
- Balloon-borne Receiver 470 670 GHz TELIS (Terahertz Limb Sounder)
- Technological Facilities at Kotel'nikov IREE

Quantum-limited coherent SIS-mixers

Frequency range 0.1 – 1.4 THz; Noise temperature down to hf/k_B

> Nb-AlOx-Nb Nb-AlN-Nb(N) $J_c = 5-30 \text{ kA/cm}^2$

> > **Rj/Rn > 20**

 $\equiv c_J$

SIS receivers for ground-based radio astronomy

Event Horizon Telescope (EHT)

"Millimetron" – Russian Space Agency 10 m cryogenic mirror (6 μm RMS) ; λ = 0,07- 10 mm http://millimetron.ru/en/ Provisional launch date 2029

Earth-Space VLBI receivers Band 3 (ALMA B6) : 211-275 GHz SSB Noise Temperature < 45 K

Earths-space interferometer

3D CST model for 211-275 GHz mixer

Chip holder with IF PCB Waveguide is 1 x 0.5 mm Photo and IVCs of the Nb-AlOx-Nb SIS mixer; $A = 1 \ \mu m^2$

Hot/Cold IF signal at 6.5 GHz; LO = 262 GHz

Uncorrected DSB receiver noise temperature

Nb/AI-AIN/NbN SIS

(A = 0.5 μm² ; Jg ~ 30 кA/см²) inserted in the microstrip line: base electrode – NbTiN, top - Al

Rn = 9.7 Ohm; Rj/Rn = 30 Jg = 34 kA/cm²; Vg = 3.22 mV

DSB Receiver Noise Temperature

Atacama Pathfinder EXperiment (APEX)

CHAMP+

- 7 SIS mixers
 600 720 GHz
- 7 SIS mixers
 780 950 GHz
- IF: 4 8 GHz

Lens array at the top of the cartridge body; opened horns with the mixers & single pixel

DSB mixer noise temperature for the entire 4-12 GHz IF band vs LO frequency

TELIS (Terahertz Limb Sounder)

Balloon-Borne TELIS Instrument

TELIS-SIR Main Parameters

Input frequency range	470 – 670 GHz
Minimum DSB noise temperature	< 120 K
Output IF range	4 - 8 GHz
Spectral resolution	< 1 MHz
System stability (Allan variance)	20 s
Dissipated power (at 4.2 K stage)	< 30 mW
Operation temperature	< 4.5 K

TELIS (Terahertz Limb Sounder)

TELIS-MIPAS at Esrange, Sweden; Balloon size: 400 000 m3; Payload weight: 1 200 kg Altitude: 40 km (max); Duration: 12 hours Pressure: 5 mbar; Temperature as low as -105 C.

4 TELIS flights; Esrange, Sweden; Canada (CIO level = 2.1 ± 0.3 ppbv; BrO - 0.3 K = a few pptv)

CIO diurnal cycle

Technological Facilities at IREE

High-vacuum plants for thin-film deposition Leybold L-560 UV and Mask aligners Karl Suss MA150

Kurt J. Lesker In-Line Sputter Deposition System

Ultra-High Resolution E- Beam Lithography

Cross-section of an Integrated Superconducting Microcircuit

Nb-AIN-NbN; Nb-AlOx-Nb; $J_c = 1 - 100 \text{ kA/cm}^2$; S = 0.1 – 1000 mkm² Vg as high as 3.7 mV for Nb-AIN-NbN

Conclusion

- SIS mixers for frequency range 211 275 GHz based on Nb tunnel junctions have been designed and tested.
 DSB noise temperature below 20 K has been realized.
- SIS mixers based on Nb/AIN/NbN twin tunnel junctions incorporated in a NbTiN/AI microstrip line have been developed. The best noise temperature as low as 120 K has been achieved at 725 GHz, that is of about 3 hf/k_B.
 7-pixel 790 -950 GHz array receiver for APEX was upgraded.
- The SIS fabrication technology developed at Kotel'nikov IREE is mature enough for current radio-astronomy projects and future ground-based and space missions.

Thank you for your attention !